Abstract
This paper investigates the dynamic properties of an inhomogeneous, Bernoulli–Euler multi-segment beam composed of different materials. To the best of knowledge of the authors, the problem of random vibrations of beams composing of different chunks of the beams, namely, strong and weak parts, has not been studied in the literature. In this paper, exact solution of the natural frequencies and associated mode shapes of the multi-segment Bernoulli–Euler beam are obtained using Krylov–Duncan functions, followed by free, forced, and random vibration analyses using the normal mode method. Special emphasis is placed on two special configurations of multi-segment beam, namely, the ‘rigid-soft-rigid beam’ (RSR beam) and ‘soft-rigid-soft beam’ (SRS beam) as simplest manifestations of the multi-chunked structures. Some remarkable properties exhibited by the dynamic response of multi-segment beam are demonstrated through this work, which may be of considerable engineering significance, and could not have been anticipated in advance, especially quantitatively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Structural Stability and Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.