Abstract

Today, the most reliable detectors of steganography in empirical cover sources, such as digital images coming from a known source, are built using machine-learning by representing images with joint distributions (co-occurrences) of neighboring noise residual samples computed using local pixel predictors. In this paper, we propose an alternative statistical description of residuals by binning their random projections on local neighborhoods. The size and shape of the neighborhoods allow the steganalyst to further diversify the statistical description and thus improve detection accuracy, especially for highly adaptive steganography. Other key advantages of this approach include the possibility to model long-range dependencies among pixels and making use of information that was previously underutilized in the marginals of co-occurrences. Moreover, the proposed approach is much more flexible than the previously proposed spatial rich model, allowing the steganalyst to obtain a significantly better trade off between detection accuracy and feature dimensionality. We call the new image representation the Projection Spatial Rich Model (PSRM) and demonstrate its effectiveness on HUGO and WOW – two current state-of-the-art spatial-domain embedding schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.