Abstract

<abstract><p>This paper regards the dual effects of discrete-space and discrete-time in stochastic genetic regulatory networks via exponential Euler difference and central finite difference. Firstly, the global exponential stability of such discrete networks is investigated by using discrete constant variation formulation. In particular, the optimal exponential convergence rate is explored by solving a nonlinear optimization problem under nonlinear constraints, and an implementable computer algorithm for computing the optimal exponential convergence rate is given. Secondly, random periodic sequence for such discrete networks is investigated based on the theory of semi-flow and metric dynamical systems. The researching findings show that the spatial diffusions with nonnegative intensive coefficients have no influence on global mean square boundedness and stability, random periodicity of the networks. This paper is pioneering in considering discrete spatial diffusions, which provides a research basis for future research on genetic regulatory networks.</p></abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.