Abstract

Absolute deviation is a commonly used risk measure, which has attracted more attentions in portfolio optimization. The existing mean-absolute deviation models are devoted to either stochastic portfolio optimization or fuzzy one. However, practical investment decision problems often involve the mixture of randomness and fuzziness such as stochastic returns with fuzzy information. Thus it is necessary to model portfolio selection problem in such a hybrid uncertain environment. In this paper, we employ random fuzzy variable to describe the stochastic return on individual security with ambiguous information. We first define the absolute deviation of random fuzzy variable and then employ it as risk measure to formulate mean-absolute deviation portfolio optimization models. To find the optimal portfolio, we design random fuzzy simulation and simulation-based genetic algorithm to solve the proposed models. Finally, a numerical example for synthetic data is presented to illustrate the validity of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.