Abstract
Heavy metals in the agricultural soils of reclaimed mining areas can contaminate food and endanger human health. The objective of this study is to effectively estimate the concentrations of heavy metals, such as zinc, chromium, arsenic, and lead, using hyperspectral sensor data and the random forest (RF) algorithm in the study area of Xuzhou, China. The RF's built-in feature selection ability and modeling expressive ability in heavy metal estimation of soil were explored. After the preprocessing of the spectrum obtained by an ASD (analytical spectral device) field spectrometer, the random forest algorithm was carried out to establish the estimation model based on the correlation-selected features and the full-spectrum features respectively. Results of all the different processes were compared with classical approaches, such as partial least squares (PLS) regression and support vector machine (SVM). In all the experimental results, from the perspective of models, the best estimation model for Zn (R2 = 0.9061; RMSE = 6.5008) is based on the full-spectrum data of continuum removal (CR) pretreatment, and the best models for Cr (R2 = 0.9110; RMSE = 4.5683), As (R2 = 0.9912; RMSE = 0.5327), and Pb (R2 = 0.9756; RMSE = 1.1694) are all derived from the correlation-selected features. And these best models of these heavy metals are all established by the RF method. The experiments in this paper show that random forests can make full use of the input spectral data in the estimation of four kinds of heavy metals, and the obtained models are superior to those established by traditional methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.