Abstract

While Ising criticality in classical liquids has been firmly established both theoretically and experimentally, much less is known about criticality in liquids in which the growth of the correlation length is frustrated by finite-size effects. A theoretical approach for dealing with this issue is the random-field Ising model (RFIM). While experimental critical-exponent values have been reported for magnetic samples (here, we consider γ, ν and η), little experimental information is available for critical fluctuations in corresponding liquid systems. In this paper, we present a study on a binary liquid consisting of 3-methyl pyridine and heavy water in a very light-weight porous gel. We find that the experimental results are in agreement with the theoretical predictions from the RFIM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.