Abstract

Abstract An n-vertex graph is called C-Ramsey if it has no clique or independent set of size $C\log n$. All known constructions of Ramsey graphs involve randomness in an essential way, and there is an ongoing line of research towards showing that in fact all Ramsey graphs must obey certain “richness” properties characteristic of random graphs. Motivated by an old problem of Erd̋s and McKay, recently Narayanan, Sahasrabudhe, and Tomon conjectured that for any fixed C, every n-vertex C-Ramsey graph induces subgraphs of $\varTheta (n^{2} )$ different sizes. In this paper we prove this conjecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.