Abstract
We recently demonstrated that the spectroscopic accuracy and resolution of optical frequency combs can be obtained from a series of Ramsey-like measurements using only two amplified frequency comb pulses at variable delays. In this work we present a comprehensive analytical framework of this Ramsey-comb method in both time and frequency domains. It is shown that as opposed to traditional forms of spectroscopy, the signal analysis can be performed purely in the time domain, based on the temporal phases of the individual Ramsey signals. We give a detailed description of the robust fitting algorithm relying solely on this phase information and discuss special features such as an insensitivity to (transition-independent) spectral line-broadening mechanisms and constant phase shifts, e.g., due to the ac Stark effect from the excitation pulses themselves. The precision and resolution of the Ramsey-comb fitting method is assessed via numerical simulations, including cases of transition-dependent broadening mechanisms and phase shifts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.