Abstract

This paper proposes an improved priority list (IPL) and augmented Hopfield Lagrange neural network (ALH) for solving ramp rate constrained unit commitment (RUC) problem. The proposed IPL-ALH minimizes the total production cost subject to the power balance, 15 min spinning reserve response time constraint, generation ramp limit constraints, and minimum up and down time constraints. The IPL is a priority list enhanced by a heuristic search algorithm based on the average production cost of units, and the ALH is a continuous Hopfield network whose energy function is based on augmented Lagrangian relaxation. The IPL is used to solve unit scheduling problem satisfying spinning reserve, minimum up and down time constraints, and the ALH is used to solve ramp rate constrained economic dispatch (RED) problem by minimizing the operation cost subject to the power balance and new generator operating frame limits. For hours with insufficient power due to ramp rate or 15 min spinning reserve response time constraints, repairing strategy based on heuristic search is used to satisfy the constraints. The proposed IPL-ALH is tested on the 26-unit IEEE reliability test system, 38-unit and 45-unit practical systems and compared to combined artificial neural network with heuristics and dynamic programming (ANN-DP), improved adaptive Lagrangian relaxation (ILR), constraint logic programming (CLP), fuzzy optimization (FO), matrix real coded genetic algorithm (MRCGA), absolutely stochastic simulated annealing (ASSA), and hybrid parallel repair genetic algorithm (HPRGA). The test results indicate that the IPL-ALH obtain less total costs and faster computational times than some other methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.