Abstract
The authors used micro-Raman spectroscopy to monitor the ferroelectric (FE) to antiferroelectric (AFE) phase transition in PZT ceramic bars during the application of uniaxial stress. They designed and constructed a simple loading device, which can apply sufficient uniaxial force to transform reasonably large ceramic bars while being small enough to fit on the mechanical stage of the microscope used for Raman analysis. Raman spectra of individual grains in ceramic PZT bars were obtained as the stress on the bar was increased in increments. At the same time gauges attached to the PZT bar recorded axial and lateral strains induced by the applied stress. The Raman spectra were used to calculate an FE coordinate, which is related to the fraction of FE phase present. The authors present data showing changes in the FE coordinates of individual PZT grains and correlate these changes to stress-strain data, which plot the macroscopic evolution of the FE-to-AFE transformation. Their data indicates that the FE-to-AFE transformation does not occur simultaneously for all PZT grains but that grains react individually to local conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.