Abstract

Spectral differences between cytosine (Cyt) and 5-methylcytosine (5MC) were investigated by means of Raman spectroscopy with a combination of density functional theory (DFT) calculations. Surface-enhanced Raman scattering (SERS) revealed discriminating peaks of 5MC from those of Cyt upon adsorption on gold nanoparticles (AuNPs). Among the notable features, the multiple bands between 850 and 700cm−1 for the ring-breathing modes of 5MC and Cyt could be correlated well with the simulated spectra based on the DFT calculations of the adsorbates on the gold cluster atoms. The relative energetic stabilities of the enol/keto and the amino/imino tautomeric forms of Cyt and 5MC have been estimated using DFT calculations, before and after binding six atom gold clusters. Among the six tautomeric forms, the 7H keto amino and the 4H imino trans forms are expected to be predominant in binding gold atoms, whereas the enol trans/cis conformers would coexist in the free gas phase. Our approach may provide useful theoretical guidelines for identifying 5MC from Cyt by analyzing Raman spectra on gold surfaces on the basis of quantum-mechanical calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.