Abstract

Blast-induced traumatic brain injury (bTBI) is a kind of nervous system disease, which results in a major health and economic problem to society. However, the rapid and label-free detection method with high sensitivity is still in great demand for the diagnosis of bTBI, especially for mild bTBI. In this paper, we report a new strategy for bTBI diagnosis through hippocampus and hypothalamus tissues based on Raman spectroscopy. The spectral characteristics of hippocampus and hypothalamus tissues of experimental bTBI in rats have been investigated for mild and moderate degrees at 3 h, 6 h, 24 h, 48 h, 72 h after blast exposure. The results show that the Raman spectra of mild and moderate bTBIs in 300–1700 cm−1 and 2800–3000 cm−1 regions exhibit significant differences at different time points compared with the control group. The main reason is the content change of proteins and lipids in hippocampus and hypothalamus tissues after bTBI. Moreover, four machine learning algorithms are used to automatically identify mild and moderate bTBIs at different time points (a total of 11 groups). The highest diagnostic accuracies are up to 95.3% and 88.5% based on Raman spectra of hippocampus and hypothalamus tissue, respectively. In addition, the classification performance of linear discriminant analysis classifier has been improved after data fusion. It is suggested that there has great potential as an alternative method for high-sensitive, rapid, label-free, economical diagnosis of bTBI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.