Abstract

Graphite formed in response to thermal contact metamorphism of coal bodies with magmatic intrusion is referred to as coal-based graphite. The first-order Raman spectrum of all the coal-based graphite taken from the Lutang area, Hunan Province exhibits a single Raman band near 1585cm-1, which comes directly from in-plane vibration of aromatic layer assigned to the E2g mode. Their Raman band of the structural defect in-plane can be divided into 2 types: one is the defect band (D peak) caused by the primary structural delect of the graphite in graphitization process, which is called D2-peak located at 1 360 cm-1; the other is the defect bank caused by the secondary structural defect in the graphite subject to tectonic shearing stress, which is called D1 peak located at 1370cm-1. The second Raman spectrum of the coal-based graphite shows three-dimensional lattice degree in the coal-based graphite. If the three-dimensional lattice of graphite is not well developed, it exhibits only a band of 2700cm-1; if the three-dimensional lattice of the coal-based graphite has been formed, the band of 2700cm-1 is split into two Raman bands, which are respectively located near 2681 cm-1 and near 2726cm-1, Raman band intensity ratio increases synchronously as the ordering degree of three-dimensional lattice increases regularly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.