Abstract

ABSTRACTRaman, surface-enhanced Raman scattering, and shell isolated nanoparticles-enhanced Raman scattering techniques were used to study the indigo–nanoparticle interaction nature. Silver nanoparticles were employed with and without a silicon dioxide spacer inert layer. The SERS spectral profile, obtained using silver nanoparticles, is different from the Raman one, which led to the proposition that the indigo–silver interaction is in the range of intermolecular interactions. SERS spectral reproducibility suggests identical organization and orientation of the analyte on the metal surface. The shell isolated nanoparticles enhanced Raman scattering spectrum of indigo, obtained by using silicon dioxide coated silver nanoparticles resulted similar to its Raman spectrum. This result indicates that the indigo structure is chemically unmodified by the silicon dioxide-coated silver surface. From the shell-isolated nanoparticles-enhanced Raman scattering experiments, the electromagnetic mechanism is proposed as the reason for the spectral enhancement. Theoretical calculations allow one to infer both the indigo–silver surface interaction nature and the orientation of indigo on the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.