Abstract

Suspended particles in the ocean play an important role in global nutrient cycles. In this paper, a novel technique for the non-contact fast identification of marine particles is reported. An integrated method of digital holography and Raman spectroscopy aiming at in-situ continuous monitoring of marine particles, particularly in the deep sea where the density of particles is extremely low, is proposed. A particle located in a 20 cm water channel was illuminated using a collimated continuous wave laser beam which is used to take both a hologram and Raman spectrum to identify the shape, size and composition of the suspended material. Using a compact system, we have demonstrated the morphological and chemical analysis of plastic particles in a large volume of water. Furthermore, we have developed the in-situ device and tested it in the deep sea at a water depth of 900 m for the first time. The technique will contribute to the understanding of global-scale marine particle distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.