Abstract
AbstractIt is well known that solar energy is the main source of thermal energy coming from the sun responsible for huge operations in engineering studies. It can be seen in the technology of photovoltaic cells, solar streetlights, solar energy plates, and solar water pumping. This study is for investigating solar radiation as well as a method to improve the performance of the solar water pump (SWP) with the use of solar radiation along with nanotechnology. The thermal transfer performance of the pump is checked for the case of many impacts including heat radiations and variable thermal conductivity. An Oldroyd‐B nanofluid with entropy production analysis has been scrutinized as a working coolant liquid in the system. Graphene oxide (GO) and Cu nanoparticles have been employed in engine oil (EO) as the base liquid. It is noticed that the heat transfer performance of SWP increases in the case of amplification in thermal radiation and temperature‐dependent thermal conductivity characteristics. In comparison to low thermal conductivity nanofluid, high thermal conductivity nanofluid provides the best capability for heat transmission. The thermal efficiency of the used (GO/EG) nanofluid has been enhanced by between 7.70% and 26.68% than (Cu/EO) nanofluid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.