Abstract

IntroductionThe dopamine D4 receptor (D4R) has attracted considerable attention as potential target for the treatment of a broad range of central nervous system disorders. Although many efforts have been made to improve the performance of putative radioligand candidates, there is still a lack of D4R selective tracers suitable for in vivo PET imaging. Thus, the objective of this work was to develop a D4-selective PET ligand for clinical applications. MethodsFour compounds based on previous and new lead structures were prepared and characterized with regard to their D4R subtype selectivity and predicted lipophilicity. From these, 3-((4-(2-fluorophenyl)piperazin-1-yl)methyl)-1H-pyrrolo[2,3-b]pyridine I and (S)-4-(3-fluoro-4-methoxybenzyl)-2-(phenoxymethyl)morpholine II were selected for labeling with fluorine-18 and subsequent evaluation by in vitro autoradiography to assess their suitability as D4 radioligand candidates for in vivo imaging. ResultsThe radiosynthesis of [18F]I and [18F]II was successfully achieved by copper-mediated radiofluorination with radiochemical yields of 7% and 66%, respectively. The radioligand [18F]II showed specific binding in areas where D4 expression is expected, whereas [18F]I did not show any uptake in distinct brain regions and exhibited an unacceptable degree of non-specific binding. ConclusionsThe compounds studied exhibited high D4R subtype selectivity and logP values compatible with high brain uptake, but only ligand [18F]II showed low non-specific binding and is therefore a good candidate for further evaluation. Advances in knowledgeThe discovery of new lead structures for high-affinity D4 ligands opens up new possibilities for the development of suitable PET-radioligands. Implications for patientPET-imaging of dopamine D4-receptors could facilitate understanding, diagnosis and treatment of neuropsychiatric and neurodegenerative diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.