Abstract

Simple SummaryThe five-year survival rate of non-small-cell lung cancer (NSCLC), which accounts for 85% of all lung cancer cases, is only 10–20%. A reliable prediction model of overall survival (OS) that integrates imaging and clinical data is required. Overall, 492 patients with NSCLC from two hospitals were enrolled in this study. The compensation method was applied to reduce the variation of imaging features among different hospitals. We constructed a deep learning prediction model, DeepSurv, based on computed tomography radiomics and key clinical features to generate a personalized survival curve for each patient. The results of DeepSurv showed a good performance in discriminating high and low risk of survival. Furthermore, the generated personalized survival curves could be intuitively applied for individual OS prediction in clinical practice. We concluded that the proposed prediction model could benefit physicians, patients, and caregivers in managing NSCLC and facilitate personalized medicine.Patient outcomes of non-small-cell lung cancer (NSCLC) vary because of tumor heterogeneity and treatment strategies. This study aimed to construct a deep learning model combining both radiomic and clinical features to predict the overall survival of patients with NSCLC. To improve the reliability of the proposed model, radiomic analysis complying with the Image Biomarker Standardization Initiative and the compensation approach to integrate multicenter datasets were performed on contrast-enhanced computed tomography (CECT) images. Pretreatment CECT images and the clinical data of 492 patients with NSCLC from two hospitals were collected. The deep neural network architecture, DeepSurv, with the input of radiomic and clinical features was employed. The performance of survival prediction model was assessed using the C-index and area under the curve (AUC) 8, 12, and 24 months after diagnosis. The performance of survival prediction that combined eight radiomic features and five clinical features outperformed that solely based on radiomic or clinical features. The C-index values of the combined model achieved 0.74, 0.75, and 0.75, respectively, and AUC values of 0.76, 0.74, and 0.73, respectively, 8, 12, and 24 months after diagnosis. In conclusion, combining the traits of pretreatment CECT images, lesion characteristics, and treatment strategies could effectively predict the survival of patients with NSCLC using a deep learning model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.