Abstract

Glioblastoma is a highly infiltrative neoplasm with a high propensity of recurrence. The location of recurrence usually cannot be anticipated and depends on various factors, including the surgical resection margins. Currently, radiation planning utilizes the hyperintense signal from T2-FLAIR MRI and is delivered to a limited area defined by standardized guidelines. To this end, noninvasive early prediction and delineation of recurrence can aid in tailored targeted therapy, which may potentially delay the relapse, consequently improving overall survival. In this work, we hypothesize that radiomics-based phenotypic quantifiers may support the detection of recurrence before it is visualized on multimodal MRI. We employ retrospective longitudinal data from 29 subjects with a varying number of time points (three to 13) that includes glioblastoma recurrence. Voxelwise textural and intensity features are computed from multimodal MRI (T1-contrast enhanced [T1CE], FLAIR, and apparent diffusion coefficient), primarily to gain insights into longitudinal radiomic changes from preoperative MRI to recurrence and subsequently to predict the region of relapse from 143 ± 42 days before recurrence using machine learning. T1CE MRI first-order and gray-level co-occurrence matrix features are crucial in detecting local recurrence, while multimodal gray-level difference matrix and first-order features are highly predictive of the distant relapse, with a voxelwise test accuracy of 80.1% for distant recurrence and 71.4% for local recurrence. In summary, our work exemplifies a step forward in predicting glioblastoma recurrence using radiomics-based phenotypic changes that may potentially serve as MR-based biomarkers for customized therapeutic intervention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.