Abstract

Breast magnetic resonance imaging (MRI) is the most sensitive imaging modality for breast cancer diagnosis and is widely used clinically. Dynamic contrast-enhanced MRI is the basis for breast MRI, but ultrafast images, T2-weighted images, and diffusion-weighted images are also taken to improve the characteristics of the lesion. Such multiparametric MRI with numerous morphological and functional data poses new challenges to radiologists, and thus, new tools for reliable, reproducible, and high-volume quantitative assessments are warranted. In this context, radiomics, which is an emerging field of research involving the conversion of digital medical images into mineable data for clinical decision-making and outcome prediction, has been gaining ground in oncology. Recent development in artificial intelligence has promoted radiomics studies in various fields including breast cancer treatment and numerous studies have been conducted. However, radiomics has shown a translational gap in clinical practice, and many issues remain to be solved. In this review, we will outline the steps of radiomics workflow and investigate clinical application of radiomics focusing on breast MRI based on published literature, as well as current discussion about limitations and challenges in radiomics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.