Abstract

The purpose of this study was to determine and compare the performance of pre-treatment clinical risk score (CRS), radiomics models based on computed (CT), and their combination for predicting time to recurrence (TTR) and disease-specific survival (DSS) in patients with colorectal cancer liver metastases. We retrospectively analyzed a prospectively maintained registry of 241 patients treated with systemic chemotherapy and surgery for colorectal cancer liver metastases. Radiomics features were extracted from baseline, pre-treatment, contrast-enhanced CT images. Multiple aggregation strategies were investigated for cases with multiple metastases. Radiomics signatures were derived using feature selection methods. Random survival forests (RSF) and neural network survival models (DeepSurv) based on radiomics features, alone or combined with CRS, were developed to predict TTR and DSS. Leveraging survival models predictions, classification models were trained to predict TTR within 18 months and DSS within 3 years. Classification performance was assessed with area under the receiver operating characteristic curve (AUC) on the test set. For TTR prediction, the concordance index (95% confidence interval) was 0.57 (0.57-0.57) for CRS, 0.61 (0.60-0.61) for RSF in combination with CRS, and 0.70 (0.68-0.73) for DeepSurv in combination with CRS. For DSS prediction, the concordance index was 0.59 (0.59-0.59) for CRS, 0.57 (0.56-0.57) for RSF in combination with CRS, and 0.60 (0.58-0.61) for DeepSurv in combination with CRS. For TTR classification, the AUC was 0.33 (0.33-0.33) for CRS, 0.77 (0.75-0.78) for radiomics signature alone, and 0.58 (0.57-0.59) for DeepSurv score alone. For DSS classification, the AUC was 0.61 (0.61-0.61) for CRS, 0.57 (0.56-0.57) for radiomics signature, and 0.75 (0.74-0.76) for DeepSurv score alone. Radiomics-based survival models outperformed CRS for TTR prediction. More accurate, noninvasive, and early prediction of patient outcome may help reduce exposure to ineffective yet toxic chemotherapy or high-risk major hepatectomies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.