Abstract
We analyze the vignetting phenomenon both for optical systems with objects placed at finite distances and for systems with objects at infinity. Four of the possible definitions of the vignetting coefficient k, only two of them existing in the literature, are discussed. We propose two new definitions, i.e., a nonlinear geometric coefficient that is, in part, an analytical model of the vignetting characterization using optical software and a radiometric vignetting coefficient. The object space of each type of optical systems is studied first, defining its characteristic light circles and cones. Several simplifying assumptions are made for each of the two cases considered to derive analytical equations of the vignetting coefficient and thus to determine the best definition to be used. A geometric vignetting coefficient with two expressions, a linear classical and easy-to-use one and a nonlinear, that we propose for both types of systems is obtained. This nonlinear geometric vignetting coefficient proves to be more adequate in modeling the phenomenon, but it does not entirely fit the physical reality. We finally demonstrate that the radiometric vignetting coefficient we define and derive as a view factor for both types of optical systems is the most appropriate one. The half vignetting level, necessary in most optical design procedures to obtain a satisfactory illumination level in the image plane, is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.