Abstract

The radiometric theory of spatial coherence is presented with special attention to the validity of the approximations on which it is based. A new definition of the transverse coherence area is introduced and shown to be in general agreement with earlier definitions. In free-space propagation the product of the transverse coherence area and the intensity is shown to be constant along rectilinear rays, and, for radiation from uniform Lambert sources, a well-known paraxial formula for the transverse coherence area is extended to the extraparaxial domain. A decrease of the spatial coherence in free-space propagation takes place in regions with an increase of the intensity. For imaging systems this occurs in a finite part of image space whenever a real image of a diffusely radiating, extended object is formed at a finite distance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.