Abstract

Conventional mammographic image contrast is derived from x-ray absorption, resulting in breast structure visualization due to density gradients that attenuate radiation without distinction between transmitted, scattered, or refracted x-rays. Diffraction-enhanced imaging (DEI) allows for increased contrast with decreased radiation dose compared to conventional mammographic imaging because of monochromatic x-rays, its unique refraction-based contrast mechanism, and excellent scatter rejection. However, a lingering drawback to the clinical translation of DEI has been the requirement for synchrotron radiation. The authors' laboratory developed a DEI prototype (DEI-PR) using a readily available tungsten x-ray tube source and traditional DEI crystal optics, providing soft tissue images at 60 keV. Images of full-thickness human breast tissue specimens were acquired on synchrotron-based DEI (DEI-SR), DEI-PR, and digital mammographic systems. A panel of expert radiologists evaluated lesion feature visibility and correlation with pathology after receiving training on the interpretation of refraction contrast mammographic images. For mammographic features (mass, calcification), no significant differences were detected between the DEI-SR and DEI-PR systems. Benign lesions were perceived as better seen by radiologists using the DEI-SR system than the DEI-PR system at the [111] reflectivity, with generalizations limited by small sample size. No significant differences between DEI-SR and DEI-PR were detected for any other lesion type (atypical, cancer) at either crystal reflectivity. Thus, except for benign lesion characterizations, the DEI-PR system's performance was roughly equivalent to that of the traditional DEI system, demonstrating a significant step toward clinical translation of this modality for breast cancer applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.