Abstract

Prostate-specific membrane antigen (PSMA) is a cell surface protein that is overexpressed in prostate cancer, including hormone-refractory and metastatic disease. Our goal in this study was to develop a series of PSMA-based imaging agents for clinical use. We have synthesized and evaluated the in vivo biodistribution of two radiolabeled urea derivatives that have high affinity for PSMA in severe combined immunodeficient mice harboring MCF-7 (breast, PSMA-negative), PC-3 (prostate, PSMA-negative), and LNCaP (prostate, PSMA-positive) xenografts. Radiopharmaceutical binding selectivity and tumor uptake were also evaluated in vivo using dedicated small animal positron emission tomography, single photon emission computed tomography, and gamma scintigraphic imaging devices. N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-S-[(11)C]methyl-L-cysteine ([(11)C]DCMC K(i), 3.1 nmol/L) and N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-S-3-[(125)I]iodo-L-tyrosine ([(125)C]DCIT K(i), 1.5 nmol/L) were synthesized using [(11)C]CH(3)I and with [(125)I]NaI/Iodogen, respectively. At 30 minutes postinjection, [(11)C]DCMC and [(125)I]DCIT showed tumor/muscle ratios of 10.8 and 4.7, respectively, with clear delineation of LNCaP-derived tumors on imaging. MCF-7- and PC-3-derived tumors showed significantly less uptake of [(11)C]DCMC or [(125)I]DCIT. These results show the feasibility of imaging PSMA-positive prostate cancer using low molecular weight agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.