Abstract
AbstractKnowledge of helium diffusion kinetics is critical for materials in which helium measurements are made, particulary for thermochronology. In most cases the helium ages were younger than expected, an observation attributes to diffusive loss of helium and the ejection of high energy alpha particles. Therefore it is important to accurately calculate the distribution of the source term within a sample. In this paper, the prediction of the helium concentrations as function of a spatially variable source term are considered. Both the forward and inverse solutions are presented. Under the assumption of radially symmetric geometry, an analytical solution is deduced based on the eigenfunction expansion. Two regularization methods, the Tikhonov regularization and the spectral cutoff regularization, are considered to obtain the regularized solution. Error estimates with optimal convergence order are shown between the exact solution and the regularized solution. Numerical examples are presented to illustrate the validity and effectiveness of the proposed methods
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.