Abstract

The amount of soil organic carbon (SOC) released into the atmosphere as carbon dioxide (CO2), which is referred to as heterotrophic respiration (Rh), is technically difficult to measure despite its necessity to the understanding of how to protect and increase soil carbon stocks. Within this context, the aim of this study is to determine Rh in two Mediterranean forests dominated by pine and oak using radiocarbon measurements of the bulk SOC from different soil layers. The annual Rh was 3.22 Mg C ha−1 y−1 under pine and 3.13 Mg C ha−1 y−1 under oak, corresponding to 38 and 31% of the annual soil respiration, respectively. The accuracy of the Rh values was evaluated by determining the net primary production (NPP), as the sum of the Rh and the net ecosystem production measured by eddy covariance, then comparing it with the NPP obtained through independent biometric measurements. No significant differences were observed, which suggested the suitability of our methodology to infer Rh. Assuming the C inputs to soil to consist exclusively of the aboveground and belowground litter and the C output exclusively of the Rh, both soils were C sinks, which is consistent with a previous modeling study that was performed in the same stands. In conclusion, radiocarbon analysis of bulk SOC provided a reliable estimate of the average annual amount of soil carbon released to the atmosphere; hence, its application is convenient for calculating Rh because it utilizes only a single soil sampling and no time-consuming monitoring activities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.