Abstract

Automatic classification of transitory or pulsed radio frequency (RF) signals is of particular interest in persistent surveillance and remote sensing applications. Such transients are often acquired in noisy, cluttered environments, and may be characterized by complex or unknown analytical models, making feature extraction and classification difficult. We propose a fast, adaptive classification approach based on non-analytical dictionaries learned from data. We compare two dictionary learning methods from the image analysis literature, the K-SVD algorithm and Hebbian learning, and extend them for use with RF data. Both methods allow us to learn discriminative RF dictionaries directly from data without relying on analytical constraints or additional knowledge about the expected signal characteristics. We then use a pursuit search over the learned dictionaries to generate sparse classification features in order to identify time windows that contain a target pulse. In this paper we compare the two dictionary learning methods and discuss how their performance changes as a function of dictionary training parameters. We demonstrate that learned dictionary techniques are suitable for pulsed RF analysis and present results with varying background clutter and noise levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.