Abstract

Magnetoelectric response at the radio frequency range has been studied as a function of temperature. For that purpose, we have fabricated sandwich-type laminated composites in which the Fe61.6Co16.4Si10.8B11.2 alloy was used as the magnetostrictive element and polyvinylidene fluoride (PVDF) as the piezoelectric one. The Fe61.6Co16.4Si10.8B11.2 amorphous ribbon shows good magnetic properties, with a magnetostriction close to 30 ppm and a piezomagnetic coefficient in as-quenched state and for a long ribbon of ${21.4 \times 10^{-3}}$ ppm/Am $^{{ -1}}$ . Even though PVDF shows a higher piezoelectric coefficient ( ${d} _{{33}}={{15}}$ pC/N) than the high temperature poly and copolymides, the advantage of using these poly- and copolymides is the great stability shown at temperatures close to 200 °C. Considering this, the influence of temperature in laminated composites and in their components (epoxy, piezoelectric, and magnetostrictive constituents) has been measured and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.