Abstract

Low-divergent quasistationary neutral beams are often applied in modern magnetic fusion devices as a diagnostic tool providing unique information about plasma parameters. The most important requirements of these beams are sufficiently large current and energy of the particles, so that the beam can penetrate to the plasma core. Also the duration of the beams must be long enough, i.e., close to that of a plasma discharge, amounting to at least a few seconds for large fusion devices. We developed a neutral beam injector for plasma diagnostics in the tokamak TEXTOR-94 which is capable of meeting these requirements. The maximum beam energy is 50 keV and the source operated in hydrogen delivers an ion current of up to 2 A with a pulse duration of up to 4 s. The low divergent beam (∼0.5°– 0.6°) is geometrically focused 4 m downstream from the source having a 1/e width of ∼ 70 mm at the focal point. The beam can be modulated with a frequency variable up to 500 Hz. The ion source plasma is produced by a radio frequency discharge in hydrogen or helium. The ion beam is extracted by a four-grid system with 163 single holes. The measured beam parameters were compared with those predicted by simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.