Abstract

Neutrinos of astrophysical origin could be detected through the electromagnetic radiation of the particle showers induced in the atmosphere by their interaction in the Earth. This applies in particular for tau neutrinos of energies E>1016eV following Earth-skimming trajectories. The ∼1° beaming of the radio emission in the forward direction however implies that the radio signal will likely fly above a detector deployed over a flat site and would therefore not be detected.We study here how a non-flat detector topography can improve the detection probability of these neutrino-induced air showers. We do this by computing with three distinct tools the neutrino detection efficiency for a radio array deployed over a toy-model mountainous terrain, also taking into account experimental and topographic constraints. We show in particular that ground topographies inclined by few degrees only induce detection efficiencies typically three times larger than those obtained for flat areas for favorable trajectories. We conclude that the topography of the area where the detector is deployed will be a key factor for an experiment like GRAND.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.