Abstract

The reactions of cerium(IV) and the hydroxyl radical [generated from iron(ii)/H2O2] with bovine serum albumin (BSA) have been investigated by EPR spin trapping. With the former reagent a protein-derived thiyl radical is selectively generated; this has been characterized via the anisotropic EPR spectra observed on reaction of this radical with the spin trap DMPO. Blocking of the thiol group results in the loss of this species and the detection of a peroxyl radical, believed to be formed by reaction of oxygen with initially-generated, but undetected, carbon-centred radicals from aromatic amino acids. Experiments with a second spin trap (DBNBS) confirm the formation of these carbon-centred species and suggest that damage can be transferred from the thiol group to carbon sites in the protein. A similar transfer pathway can be observed when hydroxyl radicals react with BSA. Further experiments demonstrate that the reverse process can also occur: when hydroxyl radicals react with BSA, the thiol group appears to act as a radical sink and protects the protein from denaturation and fragmentation through the transfer of damage from a carbon site to the thiol group. Thiol-blocked BSA is shown to be more susceptible to damage than the native protein in both direct EPR experiments and enzyme digestion studies. Oxygen has a similar effect, with more rapid fragmentation detected in its presence than its absence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.