Abstract
The evolution of the primary radicals from 1-(3-bromopropyl)-2-ethyl-3-methylenecyclopropane, 1-(3-bromopropyl)-1-trimethylsilyl-2-methylenecyclopropane, 1-(3-bromobutyl)-2-ethyl-3-methylenecyclopropane, and 1-(3-bromobutyl)-1-trimethylsilyl-2-methylenecyclopropane was theoretically studied at the ROMP2/6-311++G(d,p)//UB3LYP/6-31G(d,p) theory level taking into account the effect of solvent through a PCM-UAHF model. For the propyl-substituted radicals, the attack of the radical center on the double bond takes place most favorably in an exo fashion. The subsequent ring expansions yield the product corresponding to the rupture of the endo C-C bond as the most favorable one in accordance with the experimental results. In the case of 1-(3-bromobutyl)-2-ethyl-3-methylenecyclopropane, the Gibbs energy barriers for the endo and exo attacks are the same, and the subsequent reversible evolution yields the product corresponding to the rupture of the exo C-C bond as the most favorable one through thermodynamic control in agreement with experiment. Finally, for 1-(3-bromobutyl)-1-trimethylsilyl-2-methylenecyclopropane, our calculations predict that the endo attack is 0.8 kcal/mol more favorable than the exo one. In the subsequent reversible ring expansion, the product corresponding to the rupture of the endo C-C bond is kinetically the most favored one in reasonable agreement with the experimental observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.