Abstract

A theoretical study of radiation heat transfer with reference to an optically thick fluid past an oscillating vertical flat plate with variable temperature in the presence of convection and radiation has been presented. The fluid is considered to be a gray, absorbing-emitting radiation but non- scattering medium. The Rosseland flux approximation plays an important role in determining the effect of radiation heat transfer contribution. This problem is an improvement of Stoke’s first and second problem to justify the physical signifance on this problem. This problem is solved by employing Laplace transfrom method. Numerical results of velocity and temperature distributions are depicted graphically. Also, numerical results of frictional shearing stress and critical Grashof number are presented in tables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.