Abstract

In this paper, we study the heat transfer for $$({\text {Al}}_{{2}}{\text {O}}_{{3}} -{\text {Cu}}/{\text {water}})$$ hybrid nanofluid in non-axisymmetric Homann stagnation region by adopting the Tiwari and Das model in the presence of magnetic flux. The importance of nanoparticle shape factor, i.e., cylinder, blades, bricks, and platelets has been studied under the time-independent free stream. Further, the impact of non-linear thermal radiations on the heat transfer process is investigated. The resulting equations representing the physical problem are transformed by adopting the proper variables. Through asymptotic approach, the resultant problem is scrutinized for large- $$\gamma$$ (shear-to-strain-rate ratio) through bvp4c technique in MATLAB. The impression of significant parameters for both single nanoparticle and hybrid nanofluid on the flow field, temperature, skin friction and local Nusselt number is reported through tabular and graphical depictions. It is noted that the fluid temperature in the hybrid phase has always been greater than the nanophase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.