Abstract

Natural convection in air, in a convergent channel, uniformly heated at the principal walls, is experimentally investigated, in order to analyze the effects of the radiative heat transfer. Results in terms of wall temperature profiles as a function of the walls inclination angle, the spacing between the walls, the heat flux, are given for two values of the wall emissivity. Flow visualization is carried out to show the peculiar pattern of the flow between the plates in several configurations. The comparison between two wall emissivity values, 0.10 and 0.90, shows that the effect of thermal radiation is more pronounced for larger convergence angles. For a wall emissivity equal to 0.90 and for small values of the minimum channel spacing, heat transfer in slightly convergent vertical channels is stronger than in a vertical parallel channel. Flow visualization points out a recirculating zone in the upper part of the channel for small values of the minimum channel spacing and for converging angles equal to 5° and 10°. Nusselt numbers and dimensionless maximum temperatures are then evaluated and correlated to the Rayleigh number, in the investigated range from 5 to 5 × 10 8 and 0° ⩽ θ ⩽ 10°. A very good agreement between experimental data and correlations is observed for the dimensionless parameters based on the maximum channel spacing. Comparisons between experimental and numerical data are also performed and a good relationship is observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.