Abstract

We treat the trapping of resonance radiation in a plane-parallel slab geometry, emphasizing the importance of higher-order spatial modes of excited atoms. The whole range of opacities and all commonly encountered line shapes (single or hyperfine-split spectral lines of Lorentzian, Doppler, or Voigt profiles) are covered. For the basic line shapes (Doppler and Lorentz), we solve the Holstein-Biberman equation numerically and give simple analytic fitting formulas for the shape and the trapping factor of the ground mode and higher-order modes. The results are checked and extended to more general line shapes with a quite different approach, a Monte-Carlo simulation. For the treatment of Voigt profiles, we modify common interpolation formulas for the trapping factor to make them applicable at all opacities. We critically review the Milne-Samson theory that is often used in the low-opacity regime for arbitrarily complicated lineshapes; a new definition of the equivalent opacity considerably increases its range of applicability. Almost all practically occurring radiation-trapping problems in a plane-parallel slab geometry can be treated with the present approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.