Abstract

Radiation testing results for a Geiger-mode avalanche photodiode (GM-APD) array-based imager are reviewed. Radiation testing is a crucial step in technology development that assesses the readiness of a specific device or instrument for space-based missions or other missions in high-radiation environments. Pre- and postradiation values for breakdown voltage, dark count rate (DCR), after pulsing probability, photon detection efficiency (PDE), crosstalk probability, and intrapixel sensitivity are presented. Details of the radiation testing setup and experiment are provided. The devices were exposed to a total dose of 50 krad(Si) at the Massachusetts General Hospital’s Francis H. Burr Proton Therapy Center, using monoenergetic 60 MeV protons as the radiation source. This radiation dose is equivalent to radiation absorbed over 10 solar cycles at an L2 orbit with 1-cm aluminum shielding. The DCR increased by 2.3 e−/s/pix/krad(Si) at 160 K, the afterpulsing probability increased at all temperatures and settings by a factor of ∼2, and the effective breakdown voltage shifted by +1.5 V. PDE, crosstalk probability, and intrapixel sensitivity were unchanged by radiation damage. The performance of the GM-APD imaging array is compared to the performance of the CCD on board the ASCA satellite with a similar radiation shield and radiation environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.