Abstract
Lyman-α (121.6 nm) photon and 1 keV electron-beam irradiation of pure HCONH2 (FA) ice and H2O:HCONH2 ice mixtures on high-surface-area SiO2 nanoparticles have been investigated with FT-IR spectroscopy and temperature programmed desorption (TPD). Lyman-α photolysis of pure amorphous FA ice grown at 70 K and crystalline FA ice produced by annealing to 165 K gives spectral signatures between 2120 and 2195 cm(-1) that we assign primarily to OCN(-) and CO. The OCN(-) and CO yields are ∼25% less abundant for crystalline FA ice. Photon and electron processing also produces H2 that is released from the ice between ∼90 and 140 K. A decrease in the H2 TPD peak is seen for irradiated crystalline HCONH2 ice. Lyman-α photolysis of H2O:HCONH2 mixed ices increases OCN(-) and CO production, suggesting a catalytic role of H2O. Also, for pure FA, 1 keV electron irradiation slightly increases the yield of OCN(-), while CO decarboxylation is selectively prevented. CO is also not produced in H2O:HCONH2 ices upon electron irradiation. Dissociative ionization, direct dissociative excitation, and dissociative electron attachment (DEA) channels are accessible in the Lyman-α (121.6 nm) photon and 1 keV electron-beam energy range. DEA energetically favors OCN(-) and H(-) formation, with the latter leading to H2 formation. The FA fragment product identities, yields, and branching ratios are considerably different relative to the gas phase and depend upon the radiation type, ice structure, and the presence of SiO2 nanoparticles. The latter may increase ion-electron recombination and radical recombination rates. The main products observed suggest very different condensed-phase dissociation channels from those reported for gas-phase dissociation. Formation of ions/products from FA is not negligible upon Lyman-α photolysis or electron irradiation, both of which could process ices in interstellar regions as well as in Titan's atmosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.