Abstract

Low to moderately boron-doped silicon crystals were irradiated at room temperature with a 2.0-MeV electron beam and studied by means of deep-level transient spectroscopy. New dominant hole traps H(0.12) and H(0.07) located, respectively, at 0.12 and 0.07 eV above the valence band, and an electron trap E(0.59) located at 0.59 eV below the conduction band are reported. The states H(0.12), produced directly after irradiation, and H(0.07), formed following 400 °C annealing, are observed in samples of low boron contents (∼1014 cm−3). The state E(0.59), on the other hand, is observed after 400 °C annealing in the moderately boron-doped samples (∼1015 cm−3). Based on the thermal stability and energy position of these states tentative defect identifications are proposed by correlation with published data. Other previously reported hole traps are observed at 0.22 and 0.34 eV above the valence band and are ascribed to the divacancy V2 (0/+) and the carbon interstitial-carbon substitutional pair, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.