Abstract

The changes in the intrinsic fluorescence, primarily from tryptophan residues, of sheep erythrocyte membranes following X-irradiation (0--4000 R) were investigated. The experiments showed that there was (1) a decrease in the intensity of fluorescence with increasing dose of X-rays, (2) a small shift of fluorescence emission to longer wavelengths, (3) a decrease in the fluorescence polarization, and that (4) treatment of membranes with a perturbing solvent, 2-chloroethanol, can eliminate the effects of X-rays. The amount of tryptophan in the membranes was not altered after X-irradiation. It was also shown that sulphydryl reagents, N-ethylmaleimide and 2,2'-dithiodipyridine, induced similar fluorescence changes. From these results it was concluded that the fluorescence changes could result from a change in the environment surrounding tryptophan residues, from being relatively non-polar to being more polar, implying that conformational changes of membrane proteins are brought about by low doses of X-rays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.