Abstract

Electron-beam radiation effects on n-channel IGFET parameters were studied. This paper summarizes the resulting surface- and dielectric-radiation effects obtained with a series of experiments incorporating e-gun metal deposition on MOS, MNOS, and SNOS structures. The results are compared with those using resistance-heated metal deposition for various thin-film compositions between the metal and silicon surfaces. A comparison is also made with the effects of controlled direct e-beam irradiation of the structures. The efficiency of quartz and aluminum thin films over MNOS structures, in reducing e-gun radiation effects, is evaluated for double-level metallurgy structures. The effect of different thermal-annealing conditions for offsetting the radiation effects is determined. It is concluded that e-gun metallization causes large negative voltage shifts in MOS, MNOS, and SNOS devices. While MOS threshold shifts are fully ’’annealable’’, residual MNOS and SNOS VT shifts are observed after an anneal of 350°/450°C. Thin films of quartz and aluminum over MOS and MNOS structures effectively reduce radiation effects. Other IGFET parameters are not substantially affected by e-gun radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.