Abstract

Recently, the flow and heat transfer of nanofluids has attracted much attention due to their wide applications in industry and engineering. In this paper, the authors introduce numerical investigation for the effect of radiation on the steady magnetohydrodynamic (MHD) flow and heat transfer of Cu-water and Ag-water nanofluids flow over a stretching sheet. In addtion, the effects of various physical parameters such as, radiation, solid volume fraction, suction/injection and magnetic on involved phenomena are discussed in details through graphs. The numerical results reveal that as parameter of radiation increases, the rate of energy transported to the fluid increases, consequently an increase in temperature occurs. Also, the velocity profile of the Ag–water nanoi¬‚uid is relatively less than that of the Cu–water nanoi¬‚uid by increasing the volume fraction and suction/injection parameters while, the converse is valid in the case of the temperature profile. Finally, It is observed that the Ag–water nanoi¬‚uid has higher skin friction coefficient than the Cu–water nanoi¬‚uid while, a converse behaviour is found in the case of the Nusselt number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.