Abstract

Zinc-oxide powders consisting of spherical hollow particles are obtained by hydrothermal synthesis. Comparative analysis of the diffuse reflectance spectra and their changes after irradiation with 100-keV protons of powders of micrometer-sized hollow and bulk particles of zinc oxide is carried out. We present the results of the physical and mathematical simulation of the interaction of a low-energy proton beam with zinc-oxide particles, using the GEANT4 software package. The calculation results and the experimental data are compared. Hollow particles have a greater radiation resistance to protons compared to micrometer-sized bulk particles. The effect is determined by the absence of radiation-induced defects in the volume of spherical particles, a large ionization loss associated with surface-defect formation, and the significant relaxation of radiation-induced defects in a thin layer of spheres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.