Abstract

A new theoretical model based on Boltzmann transport equation for moving displaced atoms is developed for the investigations of main important characteristics of radiation damage production in fusion structural materials. The main characteristics sub-cascades are determined here including the distribution of sub-cascades per PKA, average number of point defects per sub-cascade combining suggested model and NRT approach, sub-cascade’s cross-sections and generation rates for both elastic and inelastic processes. On the basis of this developed model the numerical calculations for the main important characteristics of radiation damage production, cascade and sub-cascade formations in different fusion structural materials such as Fe, V, C, Al, Be and W are performed using the neutron energy spectra for fusion reactors: ITER and DEMO. For the comparison of difference in radiation damage production in fusion and fission reactors the additional numerical calculations have been made for neutron energy spectrum in fast atomic reactor HFIR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.