Abstract
The objective of this study was to determine whether the change of angle of incidence of an ion beam impinging on surface blisters during their growth phase (before exfoliation) could influence the blister skin thickness and the blister crater depth. Polished, polycrystalline Inconel-625 samples were irradiated at room temperature and at normal incidence to the major sample surface with 100 keV helium ions to a total dose of 6.24 × 10 18 ions/cm 2 . The results revealed that many exfoliated blisters leave craters which have two or three concentric pits. The blister skin thickness near the center of the blister was found to agree well with the calculated projected range of 100 keV He ions in nickel. However, the blister skin thickness of some exfoliated blisters along the edge of the fracture surface showed different thicknesses. A model is proposed to explain the observed blister crater/blister skin fracture features in terms of a change of angle of incidence of the incident ions to the surface during the growth phase of surface blisters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.