Abstract

The lpr gene encodes a defective form of Fas, a cell surface protein that mediates apoptosis. This defect blocks apoptotic deletion of autoreactive T and B cells, leading to lymphoproliferation and lupus-like autoantibody production. The effects of the lpr Fas mutation on other kinds of physiologically relevant apoptosis are largely undocumented. To assess whether some of the apoptosis known to occur after ionizing radiation might be mediated by Fas/Fas ligand (FasL) interactions, we quantitated in vitro apoptosis by flow cytometry measurement of DNA content in splenic T and B cells from irradiated 5- to 8-month-old B6/lpr mice. Total apoptosis of both lpr and control cells was substantial after treatment; however there was a significant difference between B6 (73%) and lpr (25%) lymphocyte apoptosis. Thy1, CD4, CD8, and IgM cells from lpr showed much lower levels of apoptosis than control cells after irradiation. Apoptosis induced by heat shock was also impaired in lpr. The finding that gamma-irradiation increased Fas expression on B6 cells and that irradiation-induced apoptosis could be blocked with a Fas-Fc fusion protein further supported the possible involvement of Fas in this form of apoptosis. Fas/FasL interactions may thus play an important role in identifying and eliminating damaged cells after gamma-irradiation and other forms of injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.