Abstract
We expand on the empirical Green’s function deconvolution method of Ide et al. (2011) to estimate radiated energy for the six largest earthquakes worldwide over the last 10 years: 2011 M w 9.0 Tohoku-Oki, 2004 M w 9.1 Sumatra, 2010 M w 8.8 Maule, 2005 M w 8.7 Nias, 2007 M w 8.5 Bengkulu, and 2012 M w 8.6 off-Sumatra. Deconvolution of P, SV and SH components gives consistent energy results that are comparable to estimates found independently by other researchers. Apparent stress for the five great thrust earthquakes is between 0.4 and 0.8 MPa, while the 2012 off-Sumatra strike-slip earthquake has a higher apparent stress of 3 MPa, which is consistent with other studies that find a tendency for strike-slip events to be more energetic. Our results are within the spread of apparent stress from the wider global earthquake population over a large magnitude range. The azimuthal distribution of energy in each case shows signs of directivity, and in some cases, shows less energy radiated in the trench-ward direction, which may suggest enhanced tsunami potential. We find that eGfs as small as ~M 6.5 can be used for teleseismic deconvolution, and that an eGf-mainshock magnitude difference of 1.5 units yields stable results. This implies that M 8 is the minimum mainshock size for which teleseismic eGf deconvolution will work well. We propose that a database of eGf events could be used to calculate radiated energy and apparent stress of great, hazardous events in near real time, i.e., promptly enough that it could contribute to rapid response measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.