Abstract

At heliocentric distances between 14 and 22 AU, some 14 increases in the flux of 1 MeV protons have been identified over a 3 yr period by the NASA Goddard/University of New Hampshire cosmic-ray experiment on Pioneer 10. These increases appear to be associated with large solar flares. Combining the particle data with the Pioneer 10 plasma observations from the NASA/Ames plasma analyzer reveals that the particle increases are produced by radially propagating shock waves generated by the solar events. While the characteristics of these particle events in the distant heliosphere appear to differ greatly from those observed at 1 AU, they represent the evolution expected as the interplanetary magnetic field becomes almost azimuthal. These long-lived shocks provide a valuable in situ laboratory for directly studying particle acceleration under a variety of conditions. They may also represent a significant factor in producing the long-term modulation of galactic cosmic rays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.