Abstract
Abstract We investigate the properties of the radially excited charged pion, with a specific focus on its electromagnetic form factor (EFF) and its box contribution to the hadronic light-by-light (HLbL) component of the muon's anomalous magnetic moment, $a_{\mu}$. Utilizing a coupled non-perturbative framework combining Schwinger-Dyson and Bethe-Salpeter equations, we first compute the mass and weak decay constant of the pion's first radial excitation. Initial results are provided for the Rainbow-Ladder (RL) approximation, followed by an extended beyond RL (BRL) analysis that incorporates meson cloud effects. Building on our previous work, this analysis demonstrates that an accurate description of the first radial excitation can be achieved without the need for a reparametrization of the interaction kernels. Having demonstrated the effectiveness of the truncation scheme, we proceed to calculate the corresponding EFF, from which we derive the contribution of the pion's first radial excitation to the HLbL component of the muon's anomalous magnetic moment, producing $a_{\mu}^{\pi_1-\text{box}}(\text{RL}) = -(2.03 \pm 0.12) \times 10 ^{-13}$, 
 $a_{\mu}^{\pi_1-\text{box}}(\text{BRL}) = -(2.02 \pm 0.10) \times 10 ^{-13}$. Our computation also sets the groundwork for calculating related pole contributions of excited pseudoscalar mesons to $a_{\mu}$. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.
Submitted Version (
Free)
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have